Skip to main content

The Facade pattern

Facade design pattern is a structural design pattern and it's used widely. The aim of this design pattern is to provide a simple interface to the client for a complex underlying system. So, facade means face of the building. This design pattern hides all complexities of the system and just displays a simple face. Very common example could be URL interface of a browser, which hides all complexities behind and only accepts a URL which user intends to browse. Another common example could be withdrawal / deposit of money from banking system via ATM.

To withdraw money we need following steps to achieve successfully:

1. Validate card / account number

2. Validate pin

3. In case of withdrawal check account balance and allow / disallow withdrawal

4. Follow steps 1 & 2 for account deposit (Steps 3 not needed).

5. Finally show the balance.


Code Example: 

<Code>

File: WelcomeBank.h

#pragma once
#include <fmt/format.h>

class WelcomeBank{
    public:
        // ctor...
        WelcomeBank(){
            fmt::print("{}\n", "Welcome to ABC Bank");
        }

};

File: AccountNumberCheck.h

class AccountNumberCheck {
    private:
        unsigned int _acctNumber = 12345678;
    public:
         unsigned int getAccountNumber() { return _acctNumber; }
         bool isAccountActive(unsigned int accountNumber)
         {
             if(getAccountNumber() == accountNumber) return true;
             else return false;
         }
};

File: SecurityCodeCheck.h

#pragma once
class SecurityCodeCheck{
    private:
        unsigned int _securityCode = 1234;
    public:
         unsigned int getSecurityCode() { return _securityCode; }
         bool isCodeCorrect(unsigned int securityCodeToCheck)
         {
             if(getSecurityCode() == securityCodeToCheck)
                return true;
             else
                return false;
         }
};

File: FundsCheck.h

#pragma once
#include <fmt/format.h>

class FundsCheck {
    double cashInAccount = 1000.00;
    void decreaseCashInAccount(double cashWithDrawn) {
            cashInAccount -= cashWithDrawn;
        }

        void increaseCashInAccount(double cashDeposited) {
            cashInAccount += cashDeposited;
        }
    public:
        double getCashInAccount() {
            return cashInAccount;
        }

        bool haveEnoughMoney(double cashWithDrawal) {
            if(cashWithDrawal > getCashInAccount()) {
                fmt::print("Error: Don't have enough balanace!\n");
                fmt::print("Current Balance: {}\n", getCashInAccount());
                return false;
            }
            else {
                decreaseCashInAccount(cashWithDrawal);
                fmt::print("Withdrawal complete, New Balance is: {}\n", getCashInAccount());
                return true;
            }
        }

        void makeDeposits(double cashToDeposit){
            increaseCashInAccount(cashToDeposit);
            fmt::print("Deposit complete, new balance is: {}\n", getCashInAccount());
        }
};

File: BankAccountFacade.h

/* This is our facade implementation */
#include "AccountNumberCheck.h"
#include "FundsCheck.h"
#include "SecurityCodeCheck.h"
#include "WelcomeBank.h"

class BankAccountFacade{
    private:
        unsigned int _accountNumber;
        unsigned int _securityCode;

        AccountNumberCheck accCheker;
        SecurityCodeCheck codeChecker;
        FundsCheck fundCheker;

    public:
        BankAccountFacade(int accNum, int secCode) :
            _accountNumber(accNum),
            _securityCode(secCode) {}
        unsigned int getAccountNumber() { return _accountNumber; }
        unsigned int getSecurityCode() { return _securityCode; }

        void withdrawCash(double cashToGet) {
           
            WelcomeBank bankGreet;
            if(accCheker.isAccountActive(getAccountNumber()) &&
                codeChecker.isCodeCorrect(getSecurityCode()) &&
                fundCheker.haveEnoughMoney(cashToGet)) {
                    fmt::print("Transaction complete\n");
                }
                else
                    fmt::print("Transaction failed\n");
        }

        void depositCash(double cashToDeposit) {
            WelcomeBank bankGreet;

            if(accCheker.isAccountActive(getAccountNumber()) &&
                codeChecker.isCodeCorrect(getSecurityCode())) {
                    fundCheker.makeDeposits(cashToDeposit);
                    fmt::print("Transaction complete\n");
                }
                else
                    fmt::print("Transaction failed\n");
        }
};

// This part contains our client code
File: example.cpp

#include "BankAccountFacade.h"
int main()
{
    BankAccountFacade accessingBank(12345678, 1234);
    accessingBank.withdrawCash(50.00);
    accessingBank.withdrawCash(900.00);
    accessingBank.depositCash(50.00);
    return 0;
}

</Code> 

Demo (Compiler Explorer code)

Credit: Design Patterns: Elements of Reusable Object-Oriented Software (by GoF)

Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

XOR (Exclusive OR) for branchless coding

The following example shows the array reversing using the  XOR operator . No need to take any additional variable to reverse the array.   int main(int argc, _TCHAR* argv[]) { char str[] = "I AM STUDENT"; int length = strlen(str); for(int i = 0; i < ((length/2)); i++) { str[i] ^= str[length - (1+i)]; str[length - (1+i)] ^= str[i]; str[i] ^= str[length - (1+i)]; } cout << str << endl; return 0; } The above example is one of the uses of XOR but XOR comes in handy when we can do branchless coding  methods like butterfly switch etc. Sometimes this is very effective in speeding up the execution.  Let's see one of the uses of XOR in branchless coding. I am taking a simple example of Y = | X |.  Yes, I am generating abs of a supplied number. So, my function signature/definition in C++ looks like below: int absoluteBranch( int x) {     if (x < 0 ) {         return -x;     }     else {         retur

Power of Two

  I n this post will be discussing how to calculate if a number is a power of two or not. As an example, 8 is a power of two but the number 10 is not. There are many ways we can solve this. First , we will take an approach which is simple and iterative. In this case, we will calculate the power of two one by one and check with the supplied number. The below code illustrates it. bool isPowerofTwo(unsigned num) { auto y = 1; while (0 != y) { if (num == y) return true; if (num < y) return false; y <<= 1; } return false; } Second , assuming, the number is a 32-bit number, this is also an iterative solution. In this scenario, iterating all bits and counting the set bits. Any number which is a power of 2 will have only one bit set and the rest will be zeros. As an example, 8 in binary representation is 1000. Using this observation, we can implement an iterative solution. bool isPowerofTwo(unsigned num) { auto one_count = 0; for (auto index = 0; index < 32;