Skip to main content

Programming: Windows Threading Vs Linux Threading

In this article, I'm trying to show some differences between Windows and Linux thread creation and their respective usage.

Creating Threads:

1.
    a. In Windows: CreateThread() API is used to create a thread to execute within the virtual address space of the calling process.
    b. In Linux: pthread_create() function creates a thread.

    Function Signature:
    // Windows
    HANDLE WINAPI CreateThread(
          _In_opt_   LPSECURITY_ATTRIBUTES lpThreadAttributes,
          _In_       SIZE_T dwStackSize,
          _In_       LPTHREAD_START_ROUTINE lpStartAddress,
          _In_opt_   LPVOID lpParameter,
          _In_       DWORD dwCreationFlags,
          _Out_opt_  LPDWORD lpThreadId
    );

    Function Signature:
    // Linux
    int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
         void *(*start_routine)(void *), void *arg);

    In Windows: We can pass stack size in bytes if required to the same CreateThread() API.
    In Linux:  The stack size is set in the pthread attributes object; that is, the parameter attr of type pthread_attr_t is passed to the library call pthread_create().
        This object needs to be initialized by the call pthread_attr_init() before any attributes are set.
        The attribute object is destroyed using the call pthread_attr_destroy().
        The stack size is set using the call pthread_attr_setstacksize(): int pthread_attr_setstacksize(pthread_attr_t *threadAttr, int stack_size);

    This article uses default thread attributes to create threads on Windows and Linux.
    In Windows: Used WaitForMultipleObjects() API to force main() to wait until all threads execution are done.
    In Linux: Used pthread_join() to achieve the same.

    The following code snippets do the same stuff on Windows and Linux but there are some differences from a programming point of view.
    Code Windows:
    =============
    #include < windows.h >
    #include < stdio.h >
    #define MAX_THREADS 2

    struct MyData
    {
        char name[20];
        char thread[20];
    };

    DWORD WINAPI MyThreadFunction( LPVOID lpParam );

    int _tmain(int argc, _TCHAR* argv[])
    {
        HANDLE hThread[2] = {NULL};
   
        DWORD   dwThreadId;
        struct MyData mData1;
        struct MyData mData2;

        strcpy(mData1.name, "Testing - 1");
        strcpy(mData1.thread, "Thread - 1");

        strcpy(mData2.name, "Testing - 2");
        strcpy(mData2.thread, "Thread - 2");

        hThread[0] = CreateThread(
            NULL,                // Default Security Attributes
            0,                    // Use Default Stack size
            MyThreadFunction,    // Thread function name
            &mData1,            // Argument to thread function
            0,                    // Use default creation flags
            &dwThreadId
            );

        if(NULL == hThread[0])
        {
            printf("CreateThread failed for Thread 1\n");
        }
   
        hThread[1] = CreateThread(
            NULL,                // Default Security Attributes
            0,                // Use Default Stack size
            MyThreadFunction,        // Thread function name
            &mData2,            // Argument to thread function
            0,                    // Use default creation flags
            &dwThreadId
        );

        if(NULL == hThread[1])
        {
            printf("CreateThread failed for Thread 2\n");
        }

        // Wait until all threads have terminated.
        WaitForMultipleObjects(MAX_THREADS, hThread, TRUE, INFINITE);

        CloseHandle(hThread[0]);
        CloseHandle(hThread[1]);
   
        return 0;
    }

    DWORD WINAPI MyThreadFunction( LPVOID lpParam )
    {
        struct MyData *p = (struct MyData *)lpParam;
        printf("Name: %s\n", p->name);
        printf("Thread: %s\n", p->thread);
        printf("+++++++++++++++++++++++++++++\n");

        return 0;
    }   

    Code Linux:
    =============
    #include < pthread.h >
    #include < stdio.h >
    #include < string.h >

    struct mystruct
    {
        char name[20];
        char thread[20];
    };

    void *Print_Details(void *param)
    {
        /*Cast the pointer to right type */
        struct mystruct* p = (struct mystruct*) param;

        printf("Name: %s\n", p->name);
        printf("Thread: %s\n", p->thread);
        printf("+++++++++++++++++++\n");   

        return NULL;
    }

    /* Main program */

    int main()
    {
        pthread_t thread1;
        pthread_t thread2;

        struct mystruct args1;
        struct mystruct args2;

        /* Create new thread */
        strcpy(args1.name, "Testing - 1");
        strcpy(args1.thread, "Thread - 1");
        pthread_create(&thread1, NULL, &Print_Details, &args1);

        /* Create another new thread */
        strcpy(args2.name, "Testing - 2");
        strcpy(args2.thread, "Thread - 2");
        pthread_create(&thread2, NULL, &Print_Details, &args2);

        /* Ensure the First thread has finished */
        pthread_join(thread1, NULL);
   
        /* Ensure the second thread has finished */
        pthread_join(thread2, NULL);

        /* Now safe to return main */
        return 0;
    }

Reference Windows: http://msdn.microsoft.com/en-us/library/ms682453%28VS.85%29.aspx
Reference Linux: http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=%2Fapis%2Fusers_14.htm

Comments

Popular posts from this blog

XOR (Exclusive OR) for branchless coding

The following example shows the array reversing using the  XOR operator . No need to take any additional variable to reverse the array.   int main(int argc, _TCHAR* argv[]) { char str[] = "I AM STUDENT"; int length = strlen(str); for(int i = 0; i < ((length/2)); i++) { str[i] ^= str[length - (1+i)]; str[length - (1+i)] ^= str[i]; str[i] ^= str[length - (1+i)]; } cout << str << endl; return 0; } The above example is one of the uses of XOR but XOR comes in handy when we can do branchless coding  methods like butterfly switch etc. Sometimes this is very effective in speeding up the execution.  Let's see one of the uses of XOR in branchless coding. I am taking a simple example of Y = | X |.  Yes, I am generating abs of a supplied number. So, my function signature/definition in C++ looks like below: int absoluteBranch( int x) {     if (x < 0 ) {         return ...

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

Power of Two

  I n this post will be discussing how to calculate if a number is a power of two or not. As an example, 8 is a power of two but the number 10 is not. There are many ways we can solve this. First , we will take an approach which is simple and iterative. In this case, we will calculate the power of two one by one and check with the supplied number. The below code illustrates it. bool isPowerofTwo(unsigned num) { auto y = 1; while (0 != y) { if (num == y) return true; if (num < y) return false; y <<= 1; } return false; } Second , assuming, the number is a 32-bit number, this is also an iterative solution. In this scenario, iterating all bits and counting the set bits. Any number which is a power of 2 will have only one bit set and the rest will be zeros. As an example, 8 in binary representation is 1000. Using this observation, we can implement an iterative solution. bool isPowerofTwo(unsigned num) { auto one_count = 0; for (auto index = 0; index < ...